Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118963, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640991

RESUMO

Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.

2.
Planta ; 258(6): 117, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957258

RESUMO

MAIN CONCLUSION: Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Ecologia , Monitoramento Ambiental/métodos , Plantas/genética
3.
Environ Res ; 212(Pt B): 113258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35430276

RESUMO

Microplastics (MPs) are emerging as a serious environmental concern, with wastewater treatment plants (WWTPs) acting as the main entry routes for MPs into aquatic and terrestrial ecosystems. On a global scale, our literature review found that MP research in WWTPs has only been conducted on 121 WWTPs in 17 countries, with the majority of the work being done in Europe (53%), followed by the United States of America and Canada (24%), Asia (18%), and Australia (5%) in recent years. MPs in WWTPs are primarily derived from Personal Care and Cosmetic Products (PCCPs), which are primarily composed of polyethylene (PE) derivatives. Based on the studies, microfibers (57%) and fragments (47%) are observed to be the most common MP forms in influents and effluents of WWTPs. The chemical characterization of MPs detected in WWTPs, showed the occurrence of polyethylene (PE) (22%), polystyrene (PS) (21%), and polypropylene (13%). Although MP retention/removal efficiencies of different treatment technologies vary from medium to high, deliberations on sludge disposal on agricultural soils containing MPs and MP intrusion into groundwater are required to sustainably regulate MP contaminant transport. Thus, the development of efficient detection methods and understanding their fate are of immense significance for the management of MPs. Despite the fact that ongoing research in MPs and WWTPs has unquestionably improved our understanding, many questions and concerns remain unanswered. In this review, the current status of the detection, occurrence, and impact of MPs in WWTPs across the world are systematically reviewed to prioritize policy-making to recognize the WWTPs as global conduits of MPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Polietileno , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...